
General Game Playing
Introduction

Michael Genesereth
Computer Science Department

Stanford University

Human Game Playing
• Intellectual Activity
• Competition

Computer Game Playing
• Testbed for AI
• Limitations

Game Playing

Narrowness
 Good at one game, not so good at others
 Cannot do anything else

Not really testing intelligence of machine
 Programmer does all the interesting analysis / design
 Machine simply follows the recipe

Limitations of Game Playing for AI

General Game Players are systems able to play
arbitrary games effectively based solely on formal
descriptions supplied at “runtime”.

Translation: They don’t know the rules until the game
starts.

Must figure out for themselves:
 legal moves, winning strategy
 in the face of incomplete info and resource bounds

General Game Playing

Versatility

Novelty

International GGP Competition

/42

Annual GGP Competition
 Held at AAAI or IJCAI conference
 Administered by Stanford University
 (Stanford folks not eligible to participate)

Annual GGP Competition

/42

Winners
 2005 - ClunePlayer - Jim Clune (USA)
 2006 - FluxPlayer - Schiffel, Thielscher (Germany)
 2007 - CadiaPlayer - Bjornsson, Finsson (Iceland)
 2008 - CadiaPlayer - Bjornsson, Finsson (Iceland)
 2010 - Ary - Mehat (France)
 2011 - TurboTurtle - Schreiber (USA)
 2012 - CadiaPlayer - Bjornsson, Finsson (Iceland)
 2013 - TurboTurtle - Schreiber (USA)
 2014 - Sancho - Draper (USA), Rose (UK)
 2015 - Galvanise - Emslie
 2016 - WoodStock - Piette (France)

History

/42

GGP-05 Winner Jim Clune

/42

International GGP Competition

/42

GGP-07, GGP-08, GGP-12 Winners

Carbon versus Silicon

/42

Human Race Being Defeated

Game Description

/42

Multiplicity of Games

Environment
 Environment with finitely many states
 One initial state and one or more terminal states
 Each state has a unique goal value for each player

Players
 Fixed, finite number of players
 Each with finitely many moves

Dynamics
 Finitely many steps
 Only one player moves on each step
 Environment changes only in response to moves

Finite Synchronous Games

/42

a

a

b a

ab

b b a ab ba a

s1 s2 s3 s4

s5 s6 s7 s8

Common Structure

0 / 0 50 / 50 50 / 50 100 / 0

0 / 0 25 / 25 25 / 25 0 / 100

19

Good News: Since all of the games that we are
considering are finite, it is possible in principle to
communicate game information in the form of state
graphs.

Problem: Size of description. Even though everything is
finite, these sets can be large.

Solution:
 Exploit regularities / structure in state graphs
 to produce compact encoding

Direct Description

f(a)

p(a)
p(b)
q(b,a)

p(b)
q(b,a)

p(a)
q(b,a)q(b,a)

p(a)
p(b)
q(a,b)

p(b)
q(a,b)

p(a)
q(a,b)q(a,b)

f(a)

f(b) f(a)

f(a)f(b)

f(b) f(b) f(b) f(b)f(b) f(b)f(b) f(b)

Structured State Machine

0 / 0 50 / 50 50 / 50 100 / 0

0 / 0 25 / 25 25 / 25 0 / 100

X
O

X

States

cell(1,1,x)
cell(1,2,b)
cell(1,3,b)
cell(2,1,b)
cell(2,2,o)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,x)
control(o)

 mark(1,3)

State UpdateActions

cell(1,1,x)
cell(1,2,b)
cell(1,3,b)
cell(2,1,b)
cell(2,2,o)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,x)
control(o)

cell(1,1,x)
cell(1,2,b)
cell(1,3,o)
cell(2,1,b)
cell(2,2,o)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,x)
control(x)

init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(x))

legal(P,mark(X,Y)) :-
 true(cell(X,Y,b)) &
 true(control(P))

legal(x,noop) :-
 true(control(o))

legal(o,noop) :-
 true(control(x))

next(cell(M,N,P)) :-
 does(P,mark(M,N))

next(cell(M,N,Z)) :-
 does(P,mark(M,N)) &
 true(cell(M,N,Z)) & Z#b

next(cell(M,N,b)) :-
 does(P,mark(J,K)) &
 true(cell(M,N,b)) &
 (M#J | N#K)

next(control(x)) :-
 true(control(o))

next(control(o)) :-
 true(control(x))

terminal :- line(P)
terminal :- ~open

goal(x,100) :- line(x)
goal(x,50) :- draw
goal(x,0) :- line(o)

goal(o,100) :- line(o)
goal(o,50) :- draw
goal(o,0) :- line(x)

row(M,P) :-
 true(cell(M,1,P)) &
 true(cell(M,2,P)) &
 true(cell(M,3,P))

column(N,P) :-
 true(cell(1,N,P)) &
 true(cell(2,N,P)) &
 true(cell(3,N,P))

diagonal(P) :-
 true(cell(1,1,P)) &
 true(cell(2,2,P)) &
 true(cell(3,3,P))

diagonal(P) :-
 true(cell(1,3,P)) &
 true(cell(2,2,P)) &
 true(cell(3,1,P))

line(P) :- row(M,P)
line(P) :- column(N,P)
line(P) :- diagonal(P)

open :- true(cell(M,N,b))

draw :- ~line(x) &
 ~line(o)

Game Description Language

What we see:

next(cell(M,N,x)) :-
 does(white,mark(M,N)) &
 true(cell(M,N,b))

What the player sees:

next(welcoul(M,N,himenoing)) :-
 does(himenoing,dukepse(M,N)) &
 true(welcoul(M,N,lorenchise))

Obfuscation

Game Playing

cell(1,1,b)
cell(1,2,b)
cell(1,3,b)
cell(2,1,b)
cell(2,2,b)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,b)
control(x)

Initial State

 mark(1,1)
 mark(1,2)
 mark(1,3)
 mark(2,1)
 mark(2,2)
 mark(2,3)
 mark(3,1)
 mark(3,2)
 mark(3,3)

Legal Moves

 mark(1,3)

cell(1,1,b) cell(1,1,b)
cell(1,2,b) cell(1,2,b)
cell(1,3,b) cell(1,3,x)
cell(2,1,b) cell(2,1,b)
cell(2,2,b) cell(2,2,b)
cell(2,3,b) cell(2,3,b)
cell(3,1,b) cell(3,1,b)
cell(3,2,b) cell(3,2,b)
cell(3,3,b) cell(3,3,b)
control(x) control(o)

State Update

Complete Game Graph Search

X O X

O X
O

X O X

O

X O X

O X
OX

X O X

O X
O X

X O X

O X
O
X

X O X

O X

X O X

O
X

X O X

O
X

X O X

O
X

X O X

O X

Incomplete Game Tree Search

How do we evaluate non-terminal states?

X O X

O

X O X

O X

X O X

O
X

X O X

O
X

X O X

O
X

X O X

O X

First Generation GGP (2005-2006)

General Heuristics
 Goal proximity (everyone)
 Maximize mobility (Barney Pell)
 Minimize opponent’s mobility (Jim Clune)

GGP-06 Final - Cylinder Checkers

Second Generation GGP (2007 on)

Monte Carlo Search

Monte Carlo Tree Search
 UCT - Uniform Confidence Bounds on Trees

25 50 0 75

100 0 0 0 0 100 100 0 0 0 0 0 100 0 100 100

Second Generation GGP

Monte Carlo Search

Offline Processing of Game Descriptions
 Compile to do the search faster
 Reformulate problem to decrease size of search space

What human programmers do in creating game players

Third Generation GGP

36

Conversion of logic to traditional programming language
 Simple, widely published algorithms
 several orders or magnitude speedup
 no asymptotic change

Conversion to Field Programmable Gate Arrays (FPGAs)
 several more orders of magnitude improvement

Compilation

Hodgepodge = Chess + Othello

 Branching factor: a Branching factor: b

Analysis of joint game:
 Branching factor as given to players: a*b
 Fringe of tree at depth n as given: (a*b)n

 Fringe of tree at depth n factored: an+bn

Game Factoring

Examples
 Factoring, e.g Hodgepodge
 Bottlenecks, e.g. Triathalon
 Symmetry detection, e.g. Tic-Tac-Toe
 Dead State Removal

Trade-off - cost of finding and using structure vs savings
 Sometimes cost proportional to size of description
 Sometimes savings proportional to size of game tree

Reformulation Opportunities

Automatic Programming

Algorithmic Expertise

Knuth in a Box

41

a b

a
4

 4

3

3

b
2

2

1

1

a b

a
4

 4

1

1

b
3

3

2

2

Game Theory

X
OX

O

O
X

Psychology

Demoralizing the Opponent
Fooling the Opponent

Conclusion

General Game Playing is not a game

Serious Business

Theory of Intelligence

Dimensions of Intelligence
 Representation of the World
 Correct and efficient reasoning
 Rationality with incomplete info and resource bounds

Generality
 Not just ability to perform well on specific tasks
 But also ability to perform well in general
 Test of intelligence, not just test of knowledge

The main advantage we expect
the advice taker to have is that
its behavior will be improvable
merely by making statements to
it, telling it about its …
environment and what is
wanted from it.
 - John McCarthy1958

John McCarthy

The potential use of computers by people
to accomplish tasks can be “one-
dimensionalized” into a spectrum
representing the nature of the instruction
that must be given the computer to do its
job. Call it the what-to-how spectrum.
At one extreme of the spectrum, the user
supplies his intelligence to instruct the
machine with precision exactly how to
do his job step-by-step. ... At the other
end of the spectrum is the user with his
real problem. ... He aspires to
communicate what he wants done ...
without having to lay out in detail all
necessary subgoals for adequate
performance.
 - Ed Feigenbaum 1974

Ed Feigenbaum

The General Problem Solver demonstrates how
generality can be achieved by factoring the specific
descriptions of individual tasks from the task-
independent processes.

Newell and Simon

A human being should be able to change a diaper, plan
an invasion, butcher a hog, conn a ship, design a
building, write a sonnet, balance accounts, build a
wall, set a bone, comfort the dying, take orders, give
orders, cooperate, act alone, solve equations, analyze a
new problem, pitch manure, program a computer, cook
a tasty meal, fight efficiently, die gallantly.
Specialization is for insects.

computer/robot
v

Robert Heinlein

Course Details

April 3 Introduction You are here.
 10 Game Description

 17 Game Playing
 24 Incomplete Search
May 1 Statistical Search

 8 Logical Optimization
 15 Materialization and Reformulation
 22 Game Tree Reformulation, e.g. Factoring

 29 Really General Game Playing
June 5 Final Competition

Schedule

Composition
 3 people each (2 or 4 okay with good reason)

Names: Identifiers:
 Pansy Division pansy_division
 The Pumamen punamen
 Team Camembert camembert
 Mighty Bourgeoisie bourgeosie
 Greedy Bastards greedybastards
 Red Hot Chili Peppers peppers
 Michael Genesereth michael_genesereth
 /*^*\ happy
 X Æ A-12 x_ash_a_12

Teams

Language
 Java
 Javascript
 Fortran

Operating System
 Mac OS
 Unix
 Linux

Hardware
 Whatever you like … but …
 Able to access course website

Technology

Required Components Extra Credit Components
 Weekly Assignments Class Participation
 Weekly Competitions Forum Participation
 Final Report Novel ideas

You do not have to win competitions to get a perfect
score, but your players must play correctly and illustrate
weekly lessons.

No curve. Grades are based completely on mastery of
subject matter as demonstrated via components above.

Grades in this course are generally quite high
(because people tend to work hard).

Grades

http://cs227b.stanford.edu

/42

58

