General Game Playing Incomplete Search

Michael Genesereth Computer Science Department Stanford University

Game Variety

Small Games

Large Games

Complete Game Graph Search

Incomplete Search

Evaluation of Non-Terminal States

How do we evaluate non-terminal states?

Choice of Depth

To what depth should we search?

Variable Depth Search

Should we search different branches to different depths?

Persistence

Can we preserve results across moves?

Evaluation Functions

How do we evaluate non-terminal states?

Evaluation Functions

Chess examples:

Piece count

Board control

Comments

Not necessarily successful

Game-specific but this is general game playing

Heuristic #1 - Mobility / Focus

Mobility is a measure of the number of things a player can do. Focus is a measure of the narrowness of the search space. It is the opposite of mobility.

Basis - number of actions in a state or number of states reachable from that state. Horizon - current state or *n* moves away.

Sometimes it is good to focus to cut down on search space. Often better to restrict opponents' moves while keeping one's own options open.

Heuristic #1 - Mobility / Focus

Mobility is a measure of the number of things a player can do. Focus is a measure of the narrowness of the search space. It is the opposite of mobility.

Basis - number of actions in a state or number of states reachable from that state. Horizon - current state or *n* moves away.

Sometimes it is good to focus to cut down on search space. Often better to restrict opponents' moves while keeping one's own options open.

Implementation

```
function mobility (state)
  {var actions = findlegals(state, library);
  var feasibles = findactions(library);
  return (actions.length/feasibles.length * 100)}

function focus (state)
  {var actions = findlegals(state, library);
  var feasibles = findactions(library);
  return (100 - actions.length/feasibles.length * 100)}
```

GGP-06 Final - Cylinder Checkers

Heuristic #2 - Pessimism

Assume value of 0 for non-terminal states.

```
value(state) = goal(role, state) if terminal(state)

value(state) = 0 otherwise
```

Example

Grey - estimates of rewards in non-terminal states - here 0.

Black - rewards in terminal states.

Heuristic #3 - Intermediate Values

Assume reward for non-terminal states.

$$value(state) = goal(role, state)$$

Good on monotonic games (where utility accumulates as the game progresses), e.g. alquerque.

Not so good on nonmonotonic games. Susceptible to "false summits".

Example

Blue - rewards in non-terminal states.

Black - rewards in terminal states.

Weighted Linear Combinations

Definition

$$f(s) = w_1 \times f_1(s) + \dots + w_n \times f_n(s)$$

Examples:

Final State Value when known

Mobility / Focus

Intermediate State Values

Other

Some players estimate weights by experimentation during the start clock. *More on this in a few weeks*.

Weighted Linear Combinations

Definition

$$f(s) = w_1 \times f_1(s) + \dots + w_n \times f_n(s)$$

Examples:

Mobility / Focus

Intermediate State Values

Other

Some players estimate weights by experimentation during the start clock. *More on this in a few weeks*.

Depth-Limited Search

To what depth should we search?

Depth-Limited Search

Depth-Limited Minimax

Minimax:

Depth-Limited Minimax

maxscore and minscore

```
function maxscore (state, depth)
 {var actions = findlegals(state, library);
  if (actions.length===0) {return 0};
 var score = 0;
  for (var i=0; i<actions.length; i++)
      {var newstate = simulate(actions[i], state, library);
       var newscore = minimaxdepth(newstate, depth);
       if (newscore===100) {return 100};
       if (newscore>score) {score = newscore}};
 return score}
function minscore (state, depth)
 {var actions = findlegals(state, library);
  if (actions.length===0) {return 0};
 var score = 100;
  for (var i=0; i<actions.length; i++)
      {var newstate = simulate(actions[i], state, library);
       var newscore = minimaxdepth(role, newstate, depth);
       if (newscore===0) {return 0};
       if (newscore<score) {score = newscore}};</pre>
 return score}
```

Remarks

Legal and random players are degenerate depth-limited search with depth 0.

Onestep and Twostep are degenerate depth-limited search with depths 1 and 2.

In general, we would like to allow greater depths.

Problem

To what depth should we search?

Problem - Insufficient Depth

Problem - Excessive Depth

Iterative Deepening

To what depth should we search?

Iterative Deepening

Use depth-limited search to explore entire tree to level 1 Use depth-limited search to explore entire tree to level 2 Use depth-limited search to explore entire tree to level 3 And so forth

Continue till time runs out Choose action that gives maximal value

Level 1

Level 2

Level 3

Naive Implementation

At what depth do we stop?

Implementation

Implementation

```
function playminimaxidinner (state,depth,deadline)
  {var actions = shuffle(findlegals(state,library));
  var best = actions[0];
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var newstate = simulate(actions[i],state,library);
      var newscore = minimaxid(newstate,depth,deadline);
      if (newscore===false) {return false};
      if (newscore===100) {return actions[i]};
      if (newscore>score) {best = actions[i]; score=newscore}};
    return best}
```

Implementation

maxscore and minscore

```
function maxscore (state, depth, deadline)
 {var actions = findlegals(state, library);
  if (actions.length===0) {return 0};
 var score = 0;
  for (var i=0; i<actions.length; i++)
      {var newstate = simulate(actions[i], state, library);
       var newscore = minimaxid(newstate, depth, deadline);
       if (newscore===false) {return false};
       if (newscore===100) {return 100};
       if (newscore>score) {score = newscore}};
  return score}
function minscore (state, depth, deadline)
 {var actions = findlegals(state, library);
  if (actions.length===0) {return 0};
 var score = 100;
  for (var i=0; i<actions.length; i++)
      {var newstate = simulate(actions[i], state, library);
       var newscore = minimaxid(newstate, depth, deadline);
       if (newscore===false) {return false};
       if (newscore===0) {return 0};
       if (newscore<score) {score = newscore}};</pre>
  return score}
```

Advantages and Disadvantages

```
Advantages requires storage linear in depth still finds shortest path to an optimal solution
```

Disadvantages (?)
Repeated work

but

Cost only a constant factor more than depth-first search

Why? Tree is growing exponentially, so fringe of tree and size of tree above fringe are approximately same

More Information

https://en.wikipedia.org/wiki/
Iterative_deepening_depth-first_search

Monte Carlo Search

Basic Idea

Sample a few branches of the game tree and use results to estimate values.

- (1) Optionally explore game graph to some level.
- (2) Beyond this, explore to end of game from fringe nodes, making random choices for moves of all players.
- (3) Assign expected utilities to fringe states by summing utilities and dividing by number of trials.

Example

Example

Example

mcs

```
function mcs (state,level)
    {if (findterminalp(state,library))
        {return findreward(role,state,library)*1};
    if (level>levels) {return montecarlo(state)};
    var active = findcontrol(state,library);
    if (active===role) {return maxscore(state,level+1)};
    return minscore(state,level+1)}
```

maxscore and minscore

```
function maxscore (state, level)
  {var actions = findlegals(state, library);
   if (actions.length===0) {return 0};
   var score = 0:
   for (var i=0; i<actions.length; i++)</pre>
       {var newstate = simulate(actions[i], state, library);
        var newscore = mcs(newstate,level);
        if (newscore===100) {return 100};
        if (newscore>score) {score = newscore}};
  return score}
function minscore (state, level)
 {var actions = findlegals(state, library);
  if (actions.length===0) {return 0};
 var score = 100;
  for (var i=0; i<actions.length; i++)
      {var newstate = simulate(actions[i], state, library);
       var newscore = mcs(role, newstate, level);
       if (newscore===0) {return 0};
       if (newscore<score) {score = newscore}};</pre>
  return score}
```

Implementation

```
function montecarlo (state)
 {var total = 0;}
 for (var i=0; i<count; i++)
      {total = total + depthcharge(state)};
 return total/count}
function depthcharge (state)
 {if (findterminalp(state,ruleset))
     {return findreward(role, state, ruleset)}*1;
 var actions = findlegals(state, library);
 if (actions.length===0) {return 0};
 var best = randomindex(actions.length);
 var newstate = simulate(actions[best], state, library);
 return depthcharge(newstate)}
```

Problems and Features

Problems

Optimistic - opponent might not respect probabilities Does not utilize game structure in any useful way

Problems and Features

Problems

Optimistic - opponent might not respect probabilities Does not utilize game structure in any useful way

Benefits

Fast because no branching in depth charges Small space because nothing stored in probes Provides guidance when other heuristics fail

Issues

Incomplete Search

Evaluation of Non-Terminal States

How do we evaluate non-terminal states? ✓

Choice of Depth

To what depth should we search?

Variable Depth Search

Can we search different branches to different depths?

Persistence

Can we preserve tree across moves or phases of ID?

